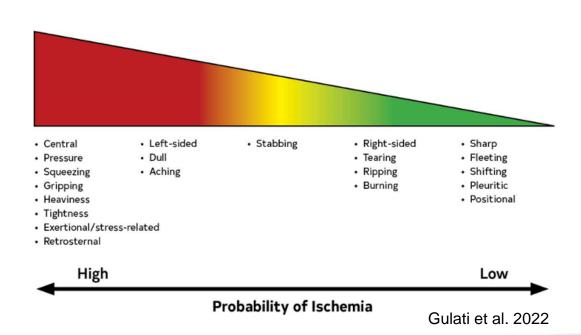


Updates on Chest Pain and Cardiac CT

Blair Suter, M.D.
Assistant Professor of Clinical Medicine
Cardiovascular Disease
November 30, 2023

Objectives

- Understand updates in 2021 Chest Pain Guidelines and how to apply these to clinical practice
- Understand how to decide which assessment is most appropriate for chest pain in your patient ED/IM/Family Medicine
- Understand basic aspects of Cardiac CT acquisition and what would make a patient a poor candidate for cardiac CT



Outline

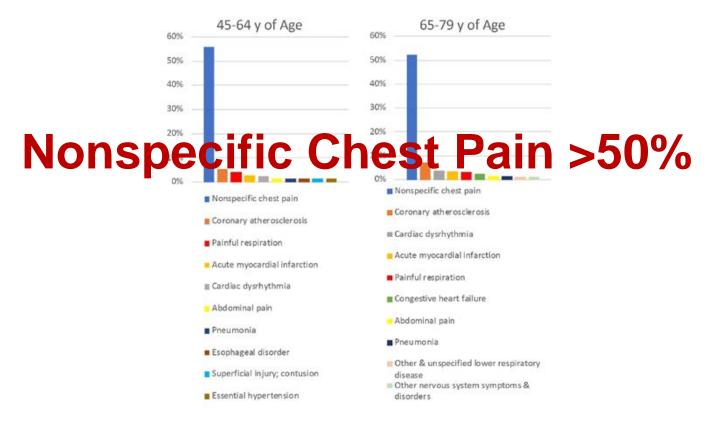
- Possible Cardiac Chest Pain
- ED Evaluation / Troponin
- Stable Chest Pain
- Performing CCTA
- Interpreting CCTA

Possible Cardiac Chest Pain

Atypical is Out

- Anginal CP (how I was taught)
 - 1. Left sided pressure radiating to shoulder/jaw
 - 2. Worse with exertion
 - 3. Improves with nitro or rest
- I was taught that atypical means you had "some" (two of these features)
- Ambiguous term that different people used differently to describe angina

Noncardiac is in


Chest pain should <u>not</u> be described as <u>atypical</u>, because it is not helpful in determining the cause and can be misinterpreted as benign in nature (Class 1).

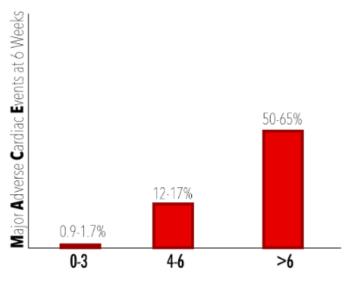
Chest pain should be described as <u>cardiac</u>, <u>possibly cardiac</u>, <u>or noncardiac</u> because these terms are more specific to the potential underlying diagnosis (Class 1).

- 90% of men and women with myocardial ischemia have typical symptoms
- People used atypical as possibly cardiac or noncardiac

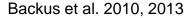
Top 10 Causes of Chest Pain in the ED by Age

Outline

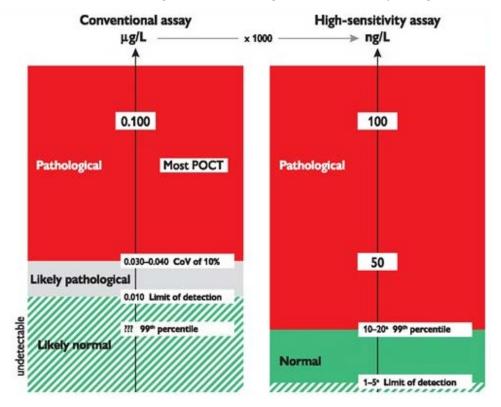
- Possible Cardiac Chest Pain
- ED Evaluation / Troponin
- Stable Chest Pain
- Performing CCTA
- Interpreting CCTA


Initial ED work-up (1)

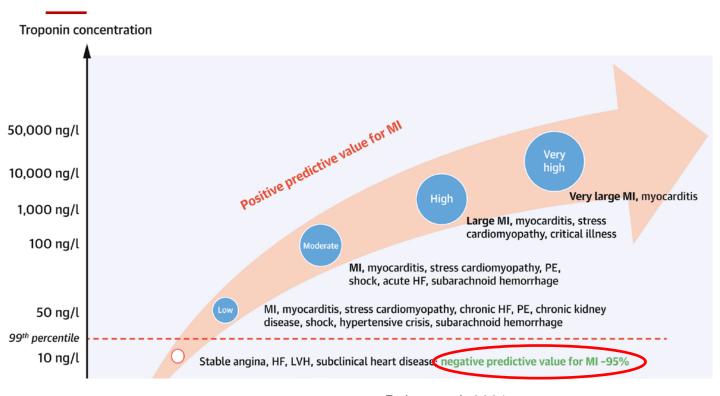
- EKG to review for STEMI within 10 minutes
 - Consider leads V7-V9 for posterior MI (COR 2a)
 - Improved sensitivity of PMI from 32 to 57% in LCx [2]
 - STEMI, NSTEMI, nondiagnostic, pericarditis, arrhythmia
- cTn as soon as possible
 - FU 1-3h high-sensitivity (ng/mL), 3-6h conventional (ng/L)
- CXR
- Clinical Decision Pathways all for suspected ACS
 - Increase ED DC without missed MACE (usually 30d)
 →HEART, EDACS, ADAPT, NOTR
 - Early detection of AMI → 2020 ESC/hs-cTn, 2016 ESC/GRACE


Heart Score Increased DC without missed MACE

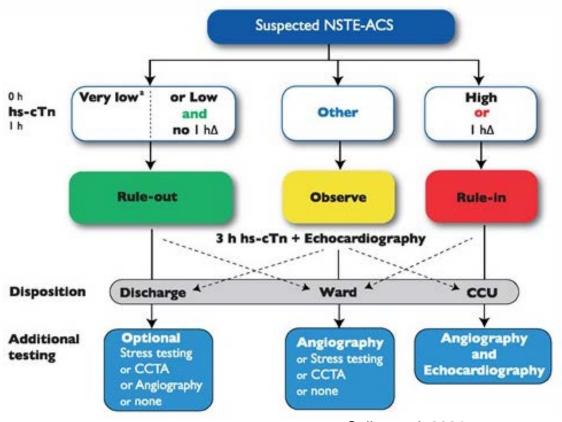
	HEART Score	
History	Slightly suspicious	0
1760	Moderately suspicious	1
	Highly suspicious	2
EKG	Normal	0
	Non-specific repolarization disturbance	1
	Significant ST deviation	2
Age	< 45	0
	45-64	1
	≥ 65	2
Risk Factors	No known risk factors	0
	1-2 risk factors	1
	\geq 3 risk factors OR atherosclerotic disease	2
Initial troponin	Less than upper limit of normal	0
	1 to 3x normal limit	1
	> 3x normal limit	2
	TOTAL:	


**HTN, DM, HLD must be Dx prior

**Good inter-observer reliability

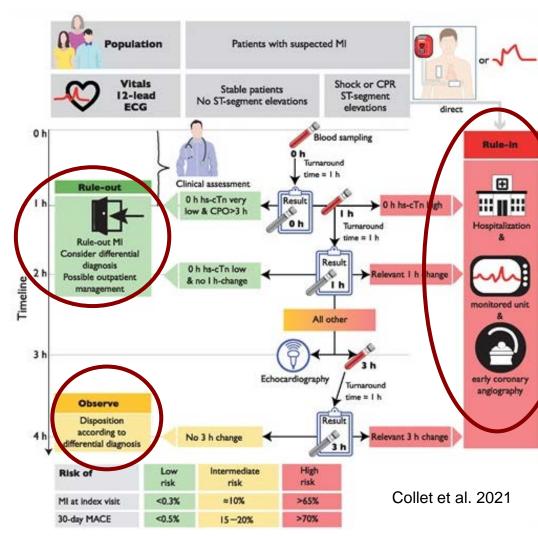


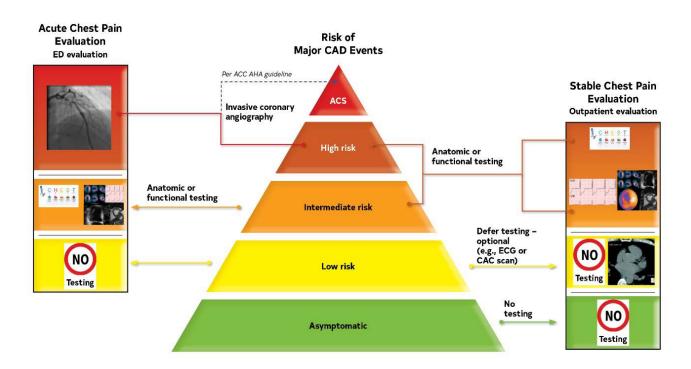
ESC/hs-cTn 2020 Early detection of AMI


Conventional (ng/mL) = High sensitivity (ng/L)/1000

Helpful to rule out. Rule in with caution.

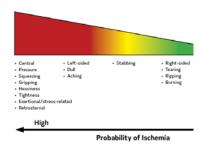
ESC/hs-cTn 2020




Collet et al. 2021

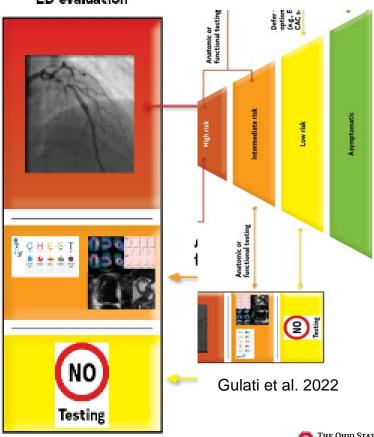
ESC/hs-cTn 2020

T-0 hs-cTn and 1- or 2-h delta are both low → >99% NPV for 30d MACE



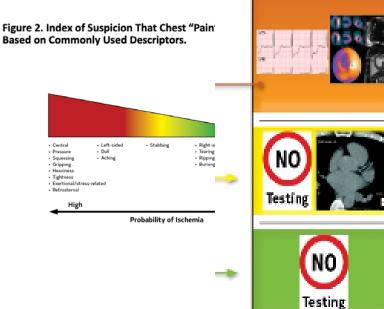
Gulati et al. 2022

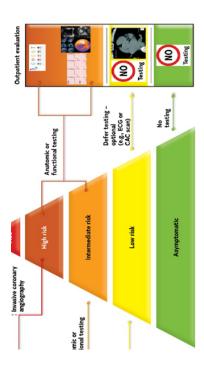
Inpatient


Figure 2. Index of Suspicion That Chest "Pain" Is Based on Commonly Used Descriptors.

Plus your pathway:
-Heart Score
-ESC hs-trop

Acute Chest Pain Evaluation


ED evaluation



Outpatient

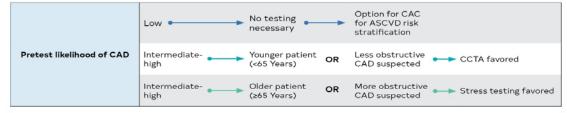

Stable Chest Pain **Evaluation** Outpatient evaluation

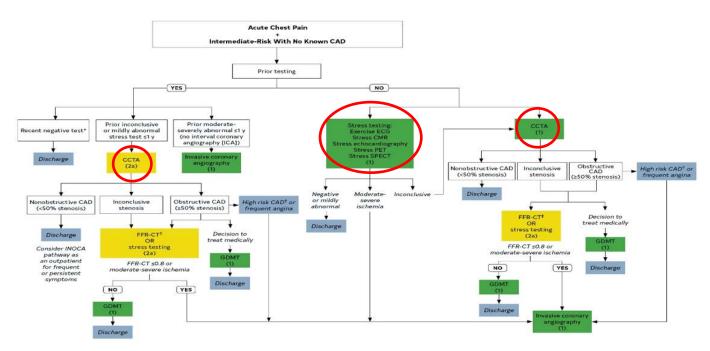
Figure 2. Index of Suspicion That Chest "Pain"

	Favors use of CCTA	Favors use of stress imaging	
Goal	Rule out obstructive CAD Detect Nonobstructive CAD	Ischemia guided management	
Availability and expertise	High quality imaging and exert interpretation routinely available	High quality imaging and expert interpretation routinely available	
Likelihood of obstructive CAD	• Age <65	• Age ≥65	
Prior test results	Prior functional study inconclusive	Prior CCTA inconclusive	
Other compelling indications	Anomalous coronary arteries Require evaluation of aorta or pulmonary arteries	Suspect scar (especially if PET or stress CMR available) Suspect coronary microvascular dysfunction (when PET or CMR available)	

Stress testing information						
	ETT	Stress echocardiography	SPECT MPI	PET MPI	Stress CMR MPI	
Patient capable of exercise	✓	✓	✓			
Pharmacologic stress indicated		✓	✓	✓	✓	
Quantitative flow				V V	✓	
LV dysfunction/scar		✓	V	✓	V	

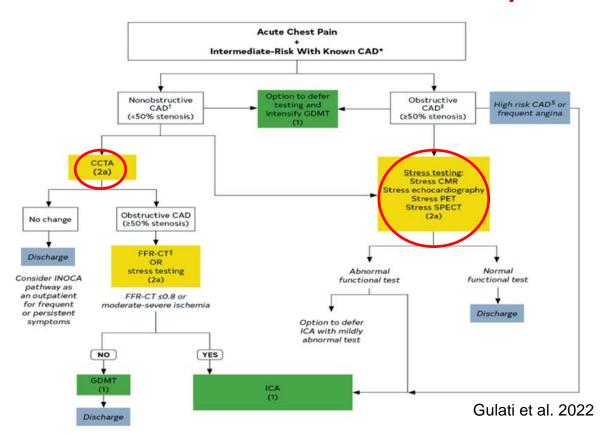
To review: Who's high risk for AMI → Cath / ICA

- EKG changes
- New EF<40%</p>
- cTn injury
- Moderate-severe ischemia on stress
- Hemodynamic instability
- High risk CDP


AUC 2010 for CCTA

	CAD				
	1. Detection of CAD in Symptomatic Patients Withou	t Known Heart Disea	ase		
	Indication		Appropriate use score		
Nor	acute symptoms possibly representing an ischemic equivalent	Low pretest probability	Intermediate pretest probability	High pretest probability	
1	ECG interpretable AND able to exercise	U (5)	A (7)	I (3)	
2	ECG uninterpretable OR unable to exercise	A (7)	A (8)	U (4)	
Acu	te symptoms with suspicion of ACS				
3	Normal ECG and cardiac biomarkers	A (7)	A (7)	U (4)	
4	ECG uninterpretable	A (7)	A (7)	U (4)	
5	Nondiagnostic ECG or equivocal cardiac biomarkers	A (7)	A (7)	U (4)	
	2. Detection of CAD/Risk Assessment in Asymptomatic P	atients Without Kno	WD CAD		
6	CCS for global CHD risk estimation in the setting of family history of premature CHD	A (7)	(
7	CCS for global CHD risk estimation in asymptomatic individuals with no known CAD	1(2)	A (7)	U (4)	
	3. Detection of CAD in Other Clinical S	cenarios			
Nev	rly diagnosed HF without prior CAD				
8	Reduced left ventricular ejection fraction	A (7)	A (7)	U (4)	
Pre	operative coronary assessment prior to noncoronary surgery				
9	Coronary evaluation before noncoronary cardiac surgery	U (6)	A (7)	I (3)	
	4. Use of Coronary CTA in the Setting of Price	or Test Results			
10	Prior normal ECG exercise stress test with continued symptoms		A (7)		
11	Prior ECG exercise testing	1(2)	A (7)	1 (3)	
12	Discordant ECG exercise and imaging results	A (8)			
		Equivocal	Mild	Moderate or Sever	
13	Prior stress imaging procedure	A (8)	U (6)	I (2)	
		CCS ≤400	CCS 401-1000	CCS >1000	
14	Diagnostic impact of coronary calcium on the decision to perform coronary CTA in symptomatic patients	A (8)	n (e)	U (4)	
		Normal		Abnormal	
15	Evaluation of new or worsening symptoms in the setting of past stress imaging study	A (8)		U (6)	

Taylor et al. 2010



So what to do with the intermediate risk patient?

So what to do with the intermediate risk patient?

Risk Classification

- Use non-invasive and invasive information + demographic, social, and medical variables
- Once you have diagnosed chronic coronary disease:
 - Low risk <1% risk of annual mortality
 - Intermediate risk 1-3%
 - High risk >3%

Virani et al. 2023

High Risk Patients (>3% death or Ml/yr): Rest

- Severe resting LV dysfunction (<35%) not readily explained by noncoronary causes
- Resting perfusion abnormalities >10% of the myocardium in patients without prior history or evidence of MI
- Multivessel obstructive CAD (>70% stenosis) or LM stenosis (>50%) on CCTA
- CACS > 400

High Risk Patients (>3% death or MI/yr): Stress

- Stress ecg findings including >2mm of STD at low workload or persisting into recover, exercise-induced STE, or exerciseinduced VT/VF
- High-risk treadmill score <-11
- Severe stress-induced LV dysfunction (peak exercise LVEF<45% or drop in LVEF with stress >10%)
- Stress-induced LV dilation
- Inducible wall motion abnormality (involving >3 segments or 2 coronary beds)
- MPI ischemia >10% or >2 coronary beds

Outline

- Possible Cardiac Chest Pain
- ED Evaluation / Troponin
- Stable Chest Pain
- Performing CCTA
- Interpreting CCTA

Stable chest pain

Pretest Probabilities of Obstructive CAD in Symptomatic Patients.

- (A) according to age, sex, and symptoms;
- (B) according to age, sex, symptoms, and CAC

Age, y	Chest Pain Men Women		Dyspnea		
			Men	Women	
30-39	≤4	≤5	0	3	
40-49	≤22	≤10	12	3	
50-59	≤32	≤13	20	9	
60-69	<u>≤</u> 44	≤16	27	14	
70+	≤52	≤27	32	12	

 A Pretest probability based on age, sex, and symptoms

CAC

≥100-999 ≥1.000

CAC

CAC

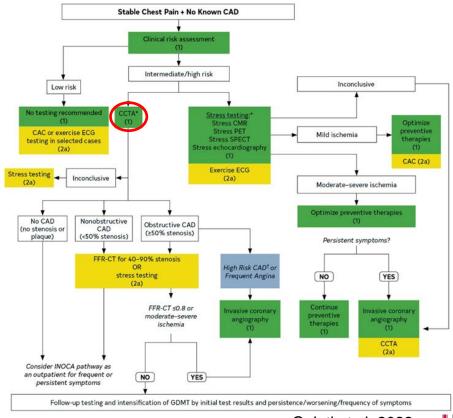
1-99

B Pretest probability based on age, sex, symptoms, and CAC score*

- The Pretest Probability shown is for patients with anginal symptoms.
 Patients with lower risk symptoms would be expected to have lower PTP
- The darker green and orange shaded regions denote the groups in which non-invasive testing is most beneficial (pre-test probability >15%). The light green shaded regions denote the groups with pre-test probability of CAD ≤15% in which the testing for diagnosis may be considered based on clinical judgement
- If CAC available, can use to estimate pretest probability based on CAC Score

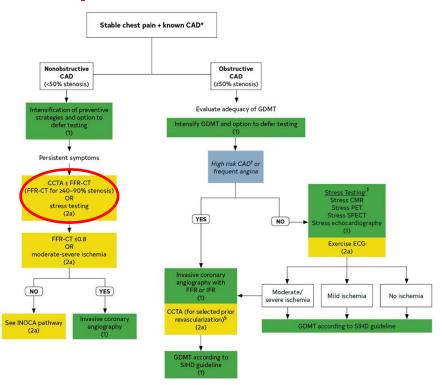
Adapted and modified from Juarez-Orozc ESC 201920, 1198-1207

* Winther, S. et al. J Am Coll Cardiol, 2020;76(21):2421-32.


AUC 2010 CCTA

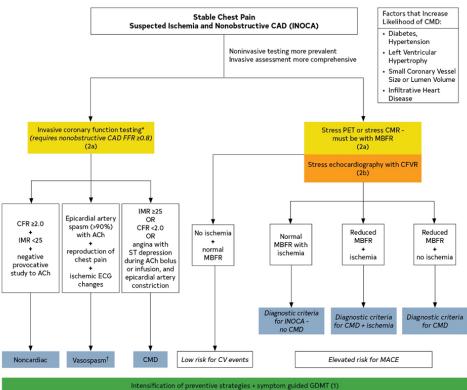
	CAD			
_	1. Detection of CAD in Symptomatic Patients Withou	t Known Heart Disea	ise	
	Indication		Appropriate use score	e
Nor	nacute symptoms possibly representing an ischemic equivalent	Low pretest probability	Intermediate pretest probability	High pretest probability
1	ECG interpretable AND able to exercise	U (5)	A (7)	I (3)
2	ECG uninterpretable OR unable to exercise	A (7)	A (8)	U (4)
Acu	te symptoms with suspicion of ACS			
3	Normal ECG and cardiac biomarkers	A (7)	A (7)	U (4)
4	ECG uninterpretable	A (7)	A (7)	U (4)
5	Nondiagnostic ECG or equivocal cardiac biomarkers	A (7)	A (7)	U (4)
	2. Detection of CAD/Risk Assessment in Asymptomatic P	atients Without Kno	wn CAD	
6	CCS for global CHD risk estimation in the setting of family history ofpremature CHD	A (7)		
7	CCS for global CHD risk estimation in asymptomatic individuals with no known CAD	I (2)	A (7)	U (4)
	3. Detection of CAD in Other Clinical S	cenarios	•	
Nev	vly diagnosed HF without prior CAD			
8	Reduced left ventricular ejection fraction	A (7)	A (7)	U (4)
Pre	operative coronary assessment prior to noncoronary surgery			
9	Coronary evaluation before noncoronary cardiac surgery	U (6)	A (7)	I (3)
	4. Use of Coronary CTA in the Setting of Price	or Test Results		
10	Prior normal ECG exercise stress test with continued symptoms	A (7)		
11	Prior ECG exercise testing	1(2)	A (7)	1 (3)
12	Discordant ECG exercise and imaging results	A (8)		
		Equivocal	Mild	Moderate or Seve
13	Prior stress imaging procedure	A (8)	U (6)	I (2)
_		CCS ≤400	CCS 401-1000	CCS >1000
14	Diagnostic impact of coronary calcium on the decision to perform coronary CTA in symptomatic patients	A (8)	U (6)	U (4)
		Normal		Abnormal
15	Evaluation of new or worsening symptoms in the setting of past stress imaging study	A (8)		U (6)

Taylor et al. 2010



Stable chest pain + no know CAD

THE OHIO STATE UNIVERSITY

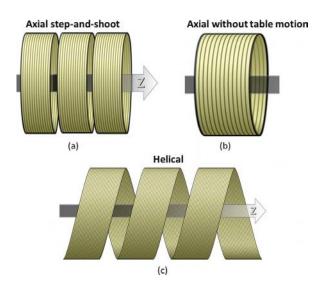

Stable chest pain + known CAD

INOCA Microvascular Spasm

CCTA not recommended

Outline

- Possible Cardiac Chest Pain
- ED Evaluation / Troponin
- Stable Chest Pain
- Performing CCTA
- Interpreting CCTA


Other Non-invasive Test to Avoid

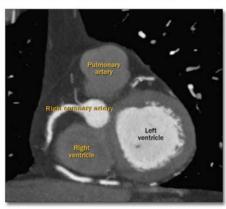
- Stress modality → BP >200/110, ACS<2d</p>
- Exercise ECG → abnormal ST baseline, digoxin, LBBB, WPW, V-paced, acute illness
- Stress nuclear
 - Vasodilator → arrhythmia, bronchospasm, caffeine
 <12h
- Stress Echo → poor windows (COPD, obesity)
 - Dob → arrhythmia, severe AS/LVOTO, acute illness
 - Atropine → narrow-angle glaucoma, MG, obstructive uropathy, obstructive GI
 - Contrast → hypersensitivity to perflutren, blood/albumin (optison)
- Stress CMR → GFR<30, claustrophobia</p>

CCTA considerations

- Contrast allergy → pretreat
- Breath hold →10 seconds
 - Respiratory issues
 - Language barrier
 - Cognitive impairment
 - Encephalopathy
- Renal disease
 - Pre-hydrate GFR 30-60
 - Avoid GFR<30</p>
 - 70-90cc of contrast (ICA is more controlled)

Yu et al. 2020

CCTA considerations


- BMI <40 → can increase keV</p>
- HR variability/ arrhythmia → 256 Multidetector CTs image whole-heart in one beat
- Beta blocker
 - Chronotropic control → po/iv metoprolol and ivabradine
 - HR <90 bpm
 - Goal HR <70bpm with meds</p>
 - Often tough if acutely sick for other reasons!
- Nitroglycerin given (0.4 or 0.8) → avoid with sildenafil

CCTA steps

- Rate control 1-2 hours prior (or from home)
 - Or on table with IV
- Triphasic/biphasic injection protocol
- Goal of sustained and unform contrast in coronaries / left heart
 - Contrast, diluted contrast, saline
- Anticubital vein, 20g IV
- Timing bolus vs. triggered bolus on HU (asc / desc Ao)
- Multiplanar reconstruction on limited FOV to maximize spatial resolution

Optimal Contrast Opacification During Coronary CTA

Harfi et al. ACCSAP

Radiation Dose with CT

Calcium scan – 0.5-0.6 mSV Mammography - 0.7 mSV 64 slice CT angiogram – 9 mSV 256 slice CT angiography – 1-3 mSV Coronary angiogram – 8mSV (2-10) Nuclear imaging – 9-41 mSv

Background radiation 3 mSV/year

Warranty

- Normal CCTA / normal LHC
- → 2 years
- Normal stress (adequate)
- → 1 year

Other Causes of Chest Pain Seen on CCTA

Respiratory					
	Pulmonary embolism				
	Pneumothorax/hemothorax				
	Pneumomediastinum				
	Pneumonia				
	Bronchitis				
	Pleural irritation				
	Malignancy				
Gastrointestinal					
	Cholecystitis				
	Pancreatitis				
	Hiatal hernia				
	Gastroesophageal reflux disease/gastritis/esophagitis				
	Peptic ulcer disease				
	Esophageal spasm				
	Dyspepsia				

Chest wall					
	Costochondritis				
	Chest wall trauma or inflammation				
Herpes zoster (shingles)					
	Cervical radiculopathy				
	Breast disease				
	Rib fracture				
	Musculoskeletal injury/spasm				
Psychological					
	Panic disorder				
	Anxiety				
	Clinical depression				
	Somatization disorder				
	Hypochondria				

Other				
	Hyperventilation syndrome			
	Carbon monoxide poisoning			
	Sarcoidosis			
	Lead poisoning			
	Prolapsed intervertebral disc			
	Thoracic outlet syndrome			
	Adverse effect of certain medications (e.g., 5-fluorouracil)			
	Sickle cell crisis			

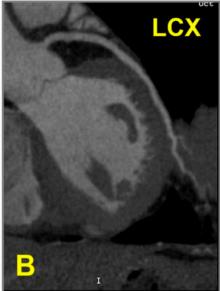
 COR 2a to refer for CBT or GI after negative myocardial ischemia work-up

Gulati et al. 2022

Outline

- Possible Cardiac Chest Pain
- ED Evaluation / Troponin
- Stable Chest Pain
- Performing CCTA
- Interpreting CCTA

Reporting: CAD-RADS 2.0

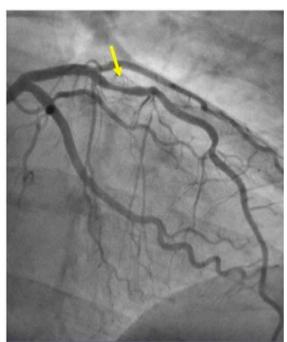

- Scale 0-5
- Modifiers: Stent (S), G (graft), V (vulnerable)
 - Diagnostic accuracy of 92%
 - Moderate to high accuracy for stents >3mm
- High-risk /vulnerable plaque features
 - Low attenuation plaque
 - Positive remodeling
 - Napkin-ring sign
 - Spotty calcification
- ACCURACY trial (2008) → high NPV
 - PPV for 70% stenosis → 48%
 - NPV for 50% and 70% stenosis → 99% and 100%
- 50-69% → stress
- 70-99% → ICA

Budoff et al. 2008 Cury et al. 2022

CAD RADS 0: 0% stenosis

Cury et al. 2022

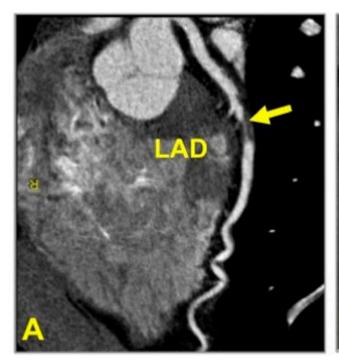
CAD RADS 1: <25% stenosis

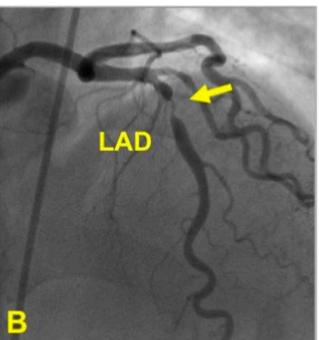


Cury et al. 2022

CAD RADS 2: 25-49% stenosis

Cury et al. 2022

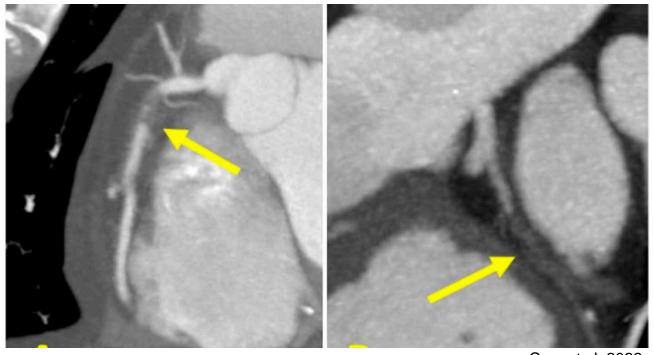

CAD RADS 3: 50-69% stenosis → CT-FFR/stress



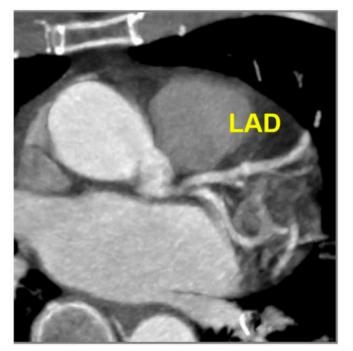
Canan et al. 2020

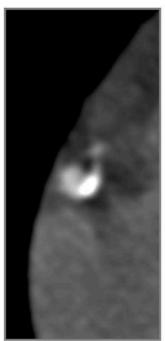
CAD RADS 4: >70% stenosis-soft plaque → ICA

Cury et al. 2022


CAD RADS 4: calcified plaque (>3k CACS) → ICA

Cury et al. 2022


CAD RADS 5: Total occlusion → Assess!



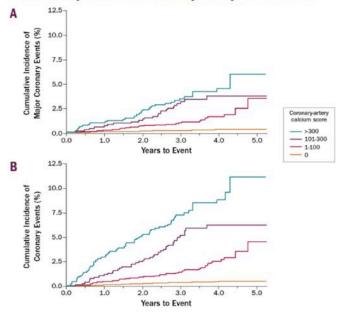
Cury et al. 2022

CAD RADS N: nondiagnostic

Cury et al. 2022

CCTA: Preventative Health

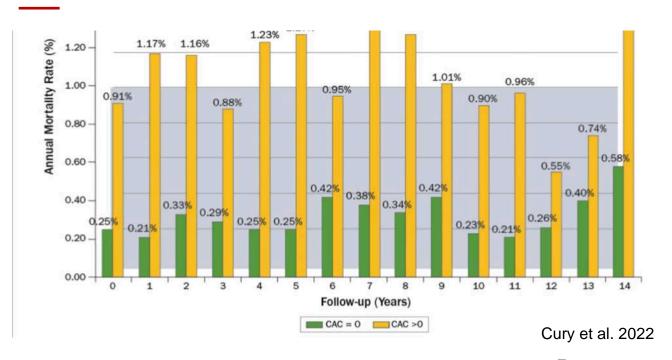
Table 2
Different methods to categorize the overall amount of coronary plaque.


	Overall amount of coronary plaque	CAC	SIS*	Visual*
P1	Mild	1–100	≤2	1-2 vessels with mild amount of plaque
P2	Moderate	101–300	3–4	1 -2 vessels with moderate amount; 3 vessels with mild amount of plaque
Р3	Severe	301–999	5–7	3 vessels with moderate amount; 1 vessel with severe amount of plaque
P4	Extensive	>1000	≥8	2-3 vessels with severe amount of plaque

Cury et al. 2022

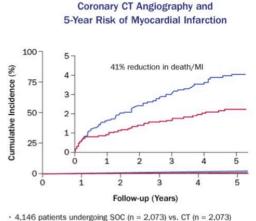
Preventive information from Cardiac CT: MESA

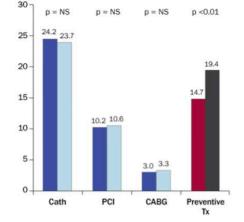
>6,000 people Age 45-84 without CAD Kaplan-Meier Curves for Coronary Events Among the MESA Cohort, Stratified by Extent of Coronary Artery Calcification



Detrano et al. 2008

Power of zero


9,715 patients. Average age 52. Unaffected by age or sex.

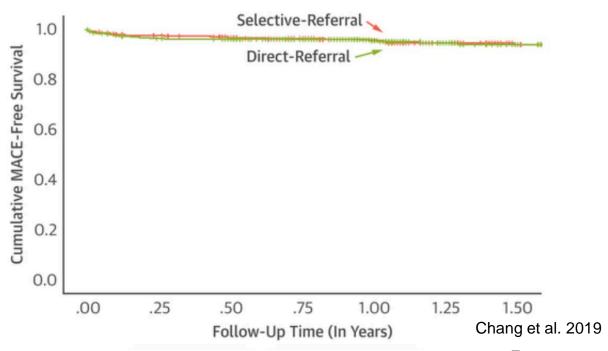


Preventive: SCOT-HEART (2018)

CCTA first vs. SOC resulted in 41% reduction in Cardiac death and MI

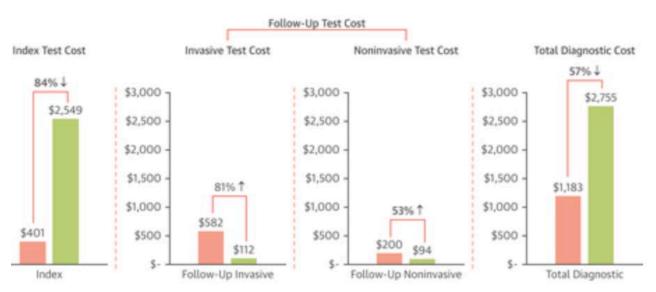
The SCOT-HEART Trial Results

centive therapies in CT arm


40% higher preventive therapies in CT arm

- Standard Care - CTA

Newby et al. 2018


Preventive: CONSERVE (2019)

ICA vs. CCTA as initial strategy in eligible patients Age 60, only 23% (vs. 61%) underwent ICA after CCTA, no increase in complications in ICA

Preventive: CONSERVE (2019)

CCTA first strategy decreased diagnostic test cost by 57% (~\$1,600)

Chang et al. 2019

Five Points on Chest Pain and CCTA

- Chest pain is often nonspecific but can be possibly cardiac
- CCTA as an appropriate initial investigate in possibly cardiac chest pain especially if age <65
- Consider contrast and HR
- Great NPV, intermediate PPV
- Preventive information and treatment

Thank you!

